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Wake instability of a fixed spheroidal bubble
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Direct numerical simulations of the flow past a fixed oblate spheroidal bubble are
carried out to determine the range of parameters within which the flow may be
unstable, and to gain some insight into the instability mechanism. The bubble aspect
ratio χ (i.e. the ratio of the major axis length over the minor axis length) is varied from
2.0 to 2.5 while the Reynolds number (based on the upstream velocity and equivalent
bubble diameter) is varied in the range 102 � Re � 3 × 103. As vorticity generation
at the bubble surface is at the root of the instability, theoretical estimates for the
maximum of the surface vorticity and the surface vorticity flux are first derived. It is
shown that, for large aspect ratios and high Reynolds numbers, the former evolves as
χ8/3 while the latter is proportional to χ7/2Re−1/2. Then it is found numerically that
the flow first becomes unstable for χ =χc ≈ 2.21. As the surface vorticity becomes
independent of Re for large enough Reynolds number, the flow is unstable only within
a finite range of Re, this range being an increasing function of χ − χc. An empirical
criterion based on the maximum of the vorticity generated at the body surface is built
to determine whether the flow is stable or not. It is shown that this criterion also
predicts the correct threshold for the wake instability past a rigid sphere, suggesting
that the nature of the body surface does not really matter in the instability mechanism.
Also the first two bifurcations of the flow are similar in nature to those found in
flows past rigid axisymmetric bluff bodies, such as a sphere or a disk. Wake dynamics
become more complex at higher Reynolds number, until the Re−1/2-dependency of
the surface vorticity flux makes the flow recover its steadiness and eventually its
axisymmetry. A qualitative analysis of the azimuthal vorticity field in the base flow at
the rear of the bubble is finally carried out to make some progress in the understanding
of the primary instability. It is suggested that the instability originates in a thin region
of the flow where the vorticity gradients have to turn almost at right angle to satisfy
two different constraints, one at the bubble surface, the other within the standing eddy.

1. Introduction
Path instability of millimetre-sized bubbles rising in water is a fascinating pheno-

menon which has been observed for centuries (Prosperetti et al. 2003). Many experi-
ments performed in the second half of the twentieth century (see Magnaudet &
Eames 2000 for a review) described the geometrical characteristics of the zigzag or
helical trajectories followed by these bubbles, as well as the corresponding bubble
shape. Experiments performed in hyperclean water (Duineveld 1995) helped specify
the threshold beyond which path instability occurs; in these experiments, the critical
bubble Reynolds number was found to be approximately 660, a value for which the
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bubble aspect ratio is about 1.85. Nevertheless none of these studies could clearly
identify the underlying mechanism responsible for the lateral movements of the bubble
and propose a rational instability scenario in agreement with observations. This was
essentially because too many uncontrolled phenomena, such as contamination by
surfactants, shape oscillations and wake effects, act simultaneously in this complex,
though elementary, physical system. This led in particular to speculations about
the possibility for a purely irrotational instability mechanism to be responsible for
the observed behaviours (Hartunian & Sears 1957; Benjamin 1987). Nevertheless,
detailed stability analyses (Meiron 1989) and measurements making use of modern
image processing (Ellingsen & Risso 2001) showed that this view was incorrect. It
is only recently that numerical studies in which all but one of the possible physical
ingredients of the problem could be deliberately ignored showed unambiguously that
wake instability is the cause of path instability (Mougin & Magnaudet 2002). More
precisely, this study established that there is a one-to-one correspondence between
the wake structure and the path geometry. In particular, it was observed that, while
the wake is obviously axisymmetric when the bubble rises in a straight line, the
transition to the zigzag path coincides with the occurrence of two counter-rotating
trailing vortices behind the bubble. Another crucial conclusion of this study was that
path instability occurs only for spheroidal bubbles with a sufficient oblateness. In
particular, bubbles with an oblateness less than 2.2 were found to rise in straight
lines whatever their Reynolds number. Our goal is to provide the first step towards
a detailed understanding of the mechanisms at work in the wake dynamics of such
millimetre-sized rising bubbles by examining in detail the occurrence and nature
of the wake instability for a fixed spheroidal bubble. Although this problem may
look academic at first glance, it has a double interest. First, it allows us to discuss
similarities and differences with the wake instability of axisymmetric rigid bodies, such
as the well-documented case of a rigid sphere. In particular, the role of the boundary
condition (no-slip vs. no-stress) on the nature and threshold of the instability can be
analysed in detail. Secondly, by comparison with results obtained with a freely moving
bubble, the fixed-bubble case helps us to understand the influence of the translational
and rotational degrees of freedom of the body on the wake evolution. For instance, the
difference in the wake structure and wake-induced force at a given Reynolds number
may be recorded and used to improve low-dimensional models of wake dynamics. To
achieve the above programme, we consider the model problem of a spheroidal bubble
of arbitrary oblateness set fixed in a uniform stream directed along the symmetry axis
of the bubble. The study makes use of direct numerical simulation (DNS) of the fully
nonlinear Navier–Stokes equations. This allows us to obtain the saturated state of
the physical system whatever the value of the two control parameters of the problem,
namely the bubble aspect ratio and the Reynolds number. During the preparation of
this paper, we were made aware that a parallel work carried out independently was
dealing with the corresponding linear stability problem (Yang & Prosperetti 2007).
Although the two studies focus on different aspects of the problem, they nicely comple-
ment each other to clarify the instability scenario of the flow past spheroidal bubbles.

2. Problem statement and numerical method
2.1. Governing equations

The flow about the bubble is governed by the standard incompressible Navier–Stokes
equations

∇ · V = 0, (2.1a)
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∂V
∂t

+ V · ∇V = − 1

ρ
∇P + ν∇2V , (2.1b)

ρ and ν being the uniform fluid density and kinematic viscosity, respectively. As the
bubble is assumed to be non-deformable and filled with a gas of negligible viscosity,
the associated boundary conditions at its surface are

V · n = 0, (2.2a)

n ×
(
∇V + t∇V

)
· n = 0, (2.2b)

n being the outer unit normal to the bubble surface and t denoting the transpose.
The flow is uniform far upstream with a velocity V ∞, so that

V → V ∞ for ‖x‖ → ∞, (2.3a)

where x is the distance measured from the bubble centre. The problem under
consideration depends on two control parameters. From the bubble volume ϑ we
may define the equivalent bubble radius Req such that Req =(3ϑ/4π)1/3 and introduce
the flow Reynolds number Re =2V∞Req/ν with V∞ = ‖V ∞‖. As we assume the bubble
to have an oblate spheroidal shape, the second control parameter is the aspect
ratio χ = b/a, where a and b denote the lengths of the minor and major semi-axes,
respectively (with ϑ = 4/3πab2). In what follows these two control parameters are
varied independently, whereas for a real bubble there is only one possible value of χ

for each Reynolds number (at least in the steady state), once the liquid properties are
specified. Hence varying χ arbitrarily independently of Re means that we artificially
change the surface tension without modifying the liquid viscosity.

2.2. Numerical aspects

The above system is solved with the JADIM code developed in our group. This
code makes use of a finite-volume discretization on a staggered grid. Spatial deriva-
tives are approximated with second-order centred schemes. The velocity field is
advanced in time using a third-order Runge–Kutta algorithm for nonlinear and
source terms, combined with a Crank–Nicolson semi-implicit algorithm for viscous
terms. Incompressibility is achieved at the end of each time step by using a projection
technique in which a Poisson equation for a pressure correction is solved. Details
about this code may be found in several work, especially Calmet & Magnaudet
(1997) for most computational aspects and Magnaudet, Rivero & Fabre (1995) and
Legendre & Magnaudet (1998) for specific aspects concerned with curvilinear grids.

In the present study, we make use of an orthogonal curvilinear grid whose inner
boundary maps the bubble surface while the outer boundary is spherical. This outer
boundary is located at a distance Rmax = 50Req from the bubble centroid to avoid
confinement effects and allow the wake to be captured over a large distance. The
upstream condition (2.3a) is prescribed on this outer boundary, except on the part of
the boundary that crosses the wake. The wake region is arbitrarily defined as a cone
with a semi-angle of 60◦, whose apex and axis correspond to the bubble centroid
and symmetry axis, respectively. On the part of the outer boundary that crosses this
cone, we use a specific non-reflecting condition based on a parabolized form of the
momentum equations combined with the requirement that the streamwise pressure
gradient does not vary in directions parallel to the boundary (Magnaudet et al. 1995).

The grid is based on oblate ellipsoidal coordinates (equation (A 1)), which guaran-
tees that the coordinate lines are orthogonal everywhere. We first generate a plane grid
within a meridian plane (φ = const.) and then rotate it about the symmetry axis of the
bubble. The grid is made of 64 uniformly distributed cells in the azimuthal direction
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(a) (b)

Figure 1. Computational grid around an oblate bubble of aspect ratio χ = 2.5.
(a) General view; (b) zoom in the vicinity of the bubble.

(φ). In the meridian direction (θ), 65 grid cells are used, with a slight refinement at
the rear of the bubble to allow a better description of the wake. Finally, 60 grid
cells are distributed in the radial (r) direction. The grid is strongly non-uniform in
this direction, since we require that at least five cells lie within the boundary layer
for all Reynolds numbers below 2 × 103. As the boundary-layer thickness scales as
Re−1/2Req , the above requirement implies that the thickness δR of the first row of
cells surrounding the bubble must be less than 10−2Req . The thickness of the grid
cells increases progressively with r , following a geometrical law with a ratio of about
1.12. We checked on several cases that the results to be discussed later are insensitive
to a change in either Rmax or δR . Note that the symmetry axis of the grid system
introduces a singular behaviour, since on this axis a given point in the physical space
(x, y, z) corresponds to different values of φ. This singularity results in difficulties in
the evaluation of the normal (radial) velocity right on the axis. A specific procedure
described by Legendre & Magnaudet (1998) is used to overcome this problem. The
techniques used to evaluate the various contributions to the hydrodynamic force
experienced by the bubble may be found in the same reference.

An example of the grid used to compute the flow around a bubble with an aspect
ratio χ = 2.5 is shown in figure 1.

2.3. Preliminary tests

The JADIM code has been extensively used in the past to compute flows in various
ranges of Reynolds number past rigid particles and bubbles. Axisymmetric flows past
oblate spheroidal bubbles were studied in detail by Blanco & Magnaudet (1995) and
we checked that the present version of the code, combined with the grid described
above, reproduces closely the corresponding results. Before we start discussing the
stability of the flow past a bubble, we briefly show here results obtained at three
different Reynolds numbers (Re = 200, 250 and 300) in the closely related and well-
documented problem of the first stages of the instability of the flow past a fixed rigid
sphere.

Figure 2 shows streamlines around the sphere at a Reynolds number Re =200
(here the equivalent radius Req equals the sphere radius R). The flow is steady and
axisymmetric. The length of the recirculation zone is 2.84R, while the separation
angle is θs = 64.5◦, both quantities being measured from the rear stagnation point.
These values are within 2 % of those reported by Tomboulides, Orszag & Karniadakis
(1993) and Johnson & Patel (1999). The drag coefficient CD such that the longitudinal
force FD experienced by the sphere equals CDπR2ρV 2

∞/2 is found to be CD =0.78,
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Figure 2. Streamlines about a rigid sphere for Re= 200.

Figure 3. Isosurfaces ωxR/V∞ = ±0.12 of the streamwise vorticity past a rigid
sphere for Re = 250.

which also compares well with the value CD = 0.79 reported by the aforementioned
authors.

For higher Reynolds numbers, the computation is initialized with the previous
stationary solution corresponding to Re =200. A small perturbation with an amplitude
10−4V∞ and a sinusoidal dependency with respect to φ is applied during some time
steps on the azimuthal velocity over all nodes of a ring of radius 0.3R (measured from
the symmetry axis) located one radius downstream of the sphere. Figure 3 shows the
most salient feature of the fully developed wake structure obtained for Re= 250 using
the above procedure. The streamwise component of the vorticity which is uniformly
zero as long as the flow is axisymmetric is now non-zero, showing that the axial sym-
metry of the flow has been broken. Indeed, the linear stability analysis of Natarajan
& Acrivos (1993) predicts that the flow undergoes a regular bifurcation for Re ≈ 210,
beyond which the first azimuthal mode m =1 is amplified and gives rise to a still sta-
tionary but non-axisymmetric flow. The wake topology displayed in figure 3 has long
been observed, both experimentally (Magarvey & Bishop 1961; Ormieres & Provansal
1999) and numerically (Tomboulides et al. 1993; Johnson & Patel 1999; Ghidersa &
Dušek 2000; Tomboulides & Orszag 2000; Thompson, Leweke & Provansal 2001). The
pair of streamwise vortices generates a lift component FL of the force on the sphere (i.e.
a component perpendicular to the upstream flow), which can be quantified using a lift
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Figure 4. Isosurfaces ωxR/V∞ = ±0.12 of the streamwise vorticity past a rigid
sphere for Re= 300.

coefficient defined through FL =CLπR2ρV 2
∞/2. We find CL = 0.062, in perfect agree-

ment with the result reported by Johnson & Patel (1999) for the same Reynolds
number.

Figure 4 shows the structure of the same isovalues of the streamwise vorticity for
Re= 300. The planar symmetry of the flow noticed in the previous regime is preserved,
but positive and negative values of ωx now alternate within each vortex thread. This is
a clear indication that the flow is unsteady, the downstream distance along each thread
being a direct measure of the time elapsed since the corresponding fluid particle joined
the wake. Again this is in agreement with the predictions of the stability analysis of
Natarajan & Acrivos (1993) who found that the flow undergoes a Hopf bifurcation
for Re ≈ 277. The aforementioned computational studies in which the fully nonlinear
Navier–Stokes equations were considered, indicate a slightly lower threshold, i.e.
Re ≈ 272. The frequency f0 associated with the shedding process displayed in figure 4
corresponds to a Strouhal number St = 2f0R/V∞ of 0.133. This value is within 2 to
3% of those reported by Johnson & Patel (1999) and Tomboulides & Orszag (2000)
for the same Reynolds number. The drag and lift coefficients fluctuate about their
mean value with the same frequency f0. In line with results reported by the above
authors, the relative fluctuations of CL are about five time larger than those of CD

(≈10 % instead of 2 %).

3. Vorticity generation on a shear-free bubble
Before we start analysing the numerical results, it is appropriate to discuss some

distinctive features of vorticity generation at the surface of a shear-free bubble. As is
well known, vorticity is created on curved shear-free surfaces because the vanishing
of the tangential stress imposes a specific relation between the tangential velocity and
its gradient in the normal direction (Batchelor 1967, p. 366). Let us split the velocity
and vorticity at the bubble surface in the form V = V S + Vnn and ω = ωS + ωnn,
respectively, with Vn = V · n and ωn = ω · n. Similarly, we may introduce the surface
gradient operator ∇S = ∇ − n∂/∂n, with ∂/∂n= (n · ∇). Using the expression of the
surface shear stress, it may then be shown that the shear-free condition implies (Wu
1995)

ωS = 2n × (V S · ∇Sn − ∇SVn), (3.1)

where ∇Sn is the surface curvature tensor. The momentum equation (2.1b) may also
be projected onto the tangent and normal to the surface to evaluate the vorticity flux
that enters the flow and identify the mechanisms that contribute to it (Wu 1995). In



Wake instability of a fixed spheroidal bubble 317

the tangential direction, this yields

ν
∂ωS

∂n
= n ×

(
DV
Dt

+ ∇P

ρ

)
+ ν(∇Sωn − ωS · ∇Sn), (3.2)

where D/Dt denotes the material derivative. Similarly, the normal projection of the
momentum equation, or equivalently the solenoidal condition ∇ · ω = 0, implies that
the surface flux of the normal vorticity is

ν
∂ωn

∂n
= −ν(ωn∇S · n + ∇S · ωS), (3.3)

where ∇S · n is the mean surface curvature. In the situation we are considering, the
surface does not deform, which implies Vn = 0, so that the last term in (3.1) vanishes.
The consequences of this boundary condition were extensively studied by Moore
(1963) who showed that it induces a boundary layer whose thickness is O(ReqRe−1/2)

within which the outer irrotational flow (V Pot, P Pot) has to be corrected from a vortical
contribution (v, p) to satisfy the shear-free condition (2.2b). Compared to the case
of a no-slip surface, the velocity correction is, however, much weaker because the
shear-free condition puts a restriction only on the normal gradient of V S , not on V S

itself. More precisely, Moore showed that within the boundary layer, the meridian
and radial components of v are O(V∞Re−1/2) and O(V∞Re−1), respectively, whereas
the pressure correction p is O(ρV∞

2Re−1). These orders of magnitude are useful for
evaluating the dominant contributions in (3.1)–(3.3). The first of them indicates that

ωS = 2n ×
(
V Pot

S · ∇Sn
)

+ O
(
(V∞/Req)Re−1/2

)
. (3.4)

Hence, the leading-order vorticity at the surface is O(V∞/Req) and its magnitude may

be evaluated directly from the surface curvature and the irrotational velocity V Pot.
A striking feature of (3.4) is that, in the limit of large Re, the surface vorticity does
not evolve with the Reynolds number for a given geometry of the surface. This is at
odds with the more familiar situation of a no-slip surface where the magnitude of the
surface vorticity increases as Re1/2. As we shall see later, this difference has crucial
implications on the instability of the flow past a bubble with a prescribed shape.

To simplify (3.2) and (3.3), we first notice that the base flow is axisymmetric, so that
the primary vorticity field has only an azimuthal component which does not depend
on φ. Therefore, ωn and ∇S · ωS are both zero and (3.3) merely tells us that the normal
vorticity flux is uniformly zero. In (3.2), we first notice that DV Pot/Dt and ∇P Pot/ρ

balance exactly. Then, expanding the acceleration term so as to make apparent the
contribution ∇(V 2/2) + ω × V , splitting into tangential and normal components and
noting that ωS × V S is parallel to n, it is straightforward to show that in the steady
base flow Dv/Dt reduces to ∇S(V Pot

S · vS + vS · vS/2), where vS is the component of v

parallel to the surface. Then, using the above estimates for p and ωS , we are left with

ν
∂ωS

∂n
= n × ∇S

(
V Pot

S · vS

)
+ O((V 2

∞/Req)Re−1). (3.5)

This equation shows that the leading-order tangential vorticity flux that enters the
flow is O((V 2

∞/Req)Re−1/2). It also shows that this flux results from the variation of

the ‘vortical’ kinetic energy V Pot · v along the surface.
Up to this point, the way the magnitude of ωS varies with the aspect ratio χ has

not been made evident, especially because V Pot
S also depends on the geometry of the

surface. To clarify this point, a theoretical determination of the maximum ωmax of the
surface vorticity is carried out in the Appendix. The main result of this calculation
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Figure 5. Variation of the maximum surface vorticity on an oblate bubble as a function of
the aspect ratio χ . —, theoretical prediction, Re → ∞; �, Re= 1000; �, Re= 200.

is (A 7) which shows that the dimensionless maximum ωmaxReq/V∞ is equal to 3 for
χ = 1 and then increases rapidly with the aspect ratio. This increase results in a
dimensionless maximum of about 13.4 for χ = 2.0 and about 22.4 for χ =2.5, the
χ-dependency being proportional to χ8/3 when the oblateness becomes very large.

Figure 5 shows how the above prediction compares with direct numerical predictions
of ωmax obtained at large but finite Re. For Re= 200, viscous effects are still fairly
large, so that ωmax is significantly lower than predicted from the irrotational solution.
In contrast, the numerical results obtained for Re= 103 are very close to the theoretical
prediction and confirm the sharp increase of ωmax with the bubble aspect ratio.

The above result can also be used to determine how the tangential vorticity flux
(3.5) varies with the bubble aspect ratio in the limit of very large χ . This is achieved
by re-writing (3.5) in terms of vS alone (noting that ωS ≈ n × ∂vS/∂n), using the oblate
ellipsoidal coordinate system defined by (A 1) (Moore 1965). Then (A 2) (which shows
that ∇S scales as χ2/3/Req at large χ) and (A 4) (which shows that the maximum of

V Pot
S scales as χV∞ in the same limit) imply that, near the bubble equator, the normal

derivative ∂/∂n of vortical quantities scales as Re1/2χ5/6/Req . Applying this estimate
to the asymptotic expression (A 9) of ωmax at large χ , leads to the conclusion that
the vorticity flux varies as V 2

∞/ReqO(Re−1/2χ7/2) near the equator, as χ and Re tend
to infinity. This estimate shows that the vorticity flux also grows very rapidly with
the aspect ratio, even though the power 7/2 is probably slightly overestimated in the
range of χ which is of primary interest for bubbles rising in low-viscosity liquids
(say χ < 3.0). Provided the bubble oblateness is large enough, we can expect that the
surface vorticity flux may reach a magnitude comparable to that found at the surface
of a rigid sphere in the transitional stage described in § 2.3, as the sharp increase due
to the oblateness appears to be able to compensate for the O(Re−1/2)-dependency for
Reynolds numbers of some hundreds.

4. Transition sequence
4.1. Axisymmetric wake

Numerical studies considering the axisymmetric Navier–Stokes equations have estab-
lished that the flow past fixed spheroidal bubbles with a sufficient oblateness may
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Figure 6. Streamlines of the flow past a bubble for χ = 2, 5 and Re= 100.

exhibit a standing eddy. This was first pointed out by Ryskin & Leal (1984) who
considered axisymmetric deformable bubbles at moderate Reynolds number (Re <

200). Dandy & Leal (1986) and later Blanco & Magnaudet (1995) carried out specific
studies with oblate spheroidal bubbles to determine how the size of the standing eddy
varies with the bubble aspect ratio and flow Reynolds number. The latter authors
showed that only bubbles with an aspect ratio larger than 1.65 exhibit such a wake
structure, which, according to the above discussion, suggests that the occurrence of
the standing eddy requires a certain amount of vorticity to be injected in the flow
from the bubble surface. For a given bubble geometry, these studies showed that the
standing eddy occurs beyond a critical Reynolds number Re1(χ) and then grows up
to a maximum size reached for a Reynolds number Re = ReM (χ). Beyond this value,
the size of the standing eddy decreases when Re increases and the eddy eventually
disappears for a Reynolds number Re2(χ). This unusual feature proceeds directly
from (3.5) which shows that the amount of vorticity that enters the flow evolves as
Re−1/2, whereas this amount is independent of Re at large Reynolds number on a
no-slip surface because vS is then O(V∞). Bearing in mind that the transport terms
in the vorticity equation result in streamwise fluxes that are O(V 2

∞/Req), i.e. they
do not vary with Re, it is clear that for large enough Re and for a given bubble
shape, the O(Re−1/2) vorticity flux generated at the bubble surface is easily evacuated
downstream by the main flow. Hence, vorticity may accumulate behind the bubble
and form a standing eddy only in a finite range of Re. The formation of a standing
eddy past a shear-free bubble thus appears to be a finite-Re feature driven by the
competition between the production of vorticity at the surface and its evacuation in
the wake. A nice discussion on this mechanism and the differences with boundary-
layer separation in the limit of infinite Reynolds number was given by Leal (1989).

An example of the flow structure in the finite-Re regime where a standing eddy
exists is provided by figure 6 corresponding to χ = 2.5 and Re = 100. The length
of the standing eddy is about 3.0 Req . Note that this picture results from a fully
three-dimensional computation, which shows that the axisymmetric flow is stable for
this set of parameters.

4.2. The unstable (χ, Re) range

In order to determine whether the axisymmetric flow past an oblate bubble is unstable
or not, we carried out a series of three-dimensional computations covering the range
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Figure 7. Phase diagram showing the parameter range within which the axisymmetric flow
is unstable. The curve on the left-hand side corresponds to the limit of the subdomain where
Blanco & Magnaudet (1995) detected a standing eddy. �, unstable; �, stable.

Re ∈ [0, 3000] and χ ∈ [2.0, 2.5]. The computational protocol was similar to that
described in § 2.3. In particular, the same azimuthal velocity disturbance was applied
during the first time steps of each computation. The flow was said to be stable if the
L2-norm of the azimuthal velocity was found to converge toward zero everywhere
in the computational domain. A grid was first generated for each χ , with χ varied
with a step of 0.1. Then the Reynolds number was varied within the range of interest
for each value of χ . The results of this series of computations are summarized in
figure 7 in which the approximate critical curve on the right-hand side was obtained
as follows. When the flow was found to be stable at a certain Re and unstable at
the next Re (or vice versa), a linear interpolation of the corresponding negative and
positive growth rates of the volume-averaged energy of the azimuthal motion in the
wake was used to determine the corresponding critical Reynolds number, Rec(χ). In
some cases, we considered a fixed Reynolds number and determined the critical aspect
ratio χc(Re) using a similar procedure. Figure 7 reveals that the axisymmetric flow is
stable whatever the Reynolds number, as long as the aspect ratio is smaller than a
critical value χcm about 2.21 for which the flow is found to be marginally stable for
Re= 500. This means in particular that, even though we did not explore aspect ratios
close to unity, there is no doubt that the flow past a spherical bubble is stable even
for Re → ∞. It is worth noting that the above value of χcm coincides with that beyond
which Mougin & Magnaudet (2002) detected path instability of a freely moving
bubble (more precisely, they found the corresponding threshold to lie within the
range [2.2, 2.25]). This is, of course, not a coincidence, since Mougin & Magnaudet
showed that wake instability is the cause of path instability. Beyond χ =χcm, the
wake is observed to be unstable within a finite range of Reynolds number whose span
increases rapidly with the difference χ − χcm. This trend is in line with the discussion in



Wake instability of a fixed spheroidal bubble 321

§ 3 and confirms that, provided the aspect ratio is large enough, the amount of vorticity
brought into the flow by the shear-free condition is sufficient for the axisymmetric
flow to become unstable. The lower branch of the critical curve corresponds to the
value Re= Remin(χ) below which viscous effects become large enough to limit the
magnitude of the vorticity at the bubble surface and maintain the overall stability of
the flow. In contrast, the upper branch Re =Remax(χ) corresponds to the Reynolds
number beyond which the Re−1/2-dependency of the vorticity flux makes it small
enough for the flow to recover its stability, even though the surface vorticity itself
does not vary any more with Re in this range. The limit curve corresponding to
the domain of existence of a standing eddy in the axisymmetric configuration (as
determined by Blanco & Magnaudet 1995) is also reported in figure 7. While the
two limit curves have qualitatively similar shapes, it is clear that the latter corresponds
to much smaller levels of the surface vorticity and surface vorticity flux. In other words,
what our results show is that the subdomain of the (χ, Re)-plane within which the
flow past the bubble becomes unstable is included within the one in which a standing
eddy exists in the base axisymmetric flow.

The two branches Re = Remin(χ) and Re = Remax(χ) of the critical curve obviously
correspond to the location where the real part of the most unstable eigenvalue σ (the
complex growth rate being defined as eσ t ) of the linear stability problem associated
with (2.1)–(2.3) changes sign. We do not attempt to consider this linearized problem
here, in contrast to the recent investigation by Yang & Prosperetti (2007). However,
a complementary and physically fruitful point of view may be to re-interpret these
critical curves by examining, for instance, the way the maximum surface vorticity ωmax,
defined in the previous section, varies along them. We recorded the corresponding
values of ωc(Re) = ωmax(Re, χ) for both Re= Remax(χ) and Re =Remin(χ), and fitted
them linearly with respect to Re. The simple empirical law that results is

ωc(Re)Req/V∞ ≈ 12.5 + 4.3 × 10−3Re. (4.1)

A noticeable point is that this single expression describes accurately both branches
of the critical curve. The result (4.1) can be used as an empirical criterion to detect
whether the flow corresponding to a given set (χ, Re) is stable or not. That is,
knowing the maximum surface vorticity ωmax(Re, χ) at the Reynolds number under
consideration, the flow is unstable (resp. stable) if ωmax(Re, χ) is larger (resp. smaller)
than ωc(Re). In particular, it is clear that since ωmax does not increase with Re at
very large Re for a given χ , the above criterion reproduces the existence of an upper
critical Reynolds number Re = Remax(χ) whose value increases with χ . Similarly, as
the Re-prefactor in (4.1) is small, the critical vorticity experiences little variation when
the Reynolds number is only a few hundred. As ωmax(Re, χ) is an increasing function
of χ (even though viscosity still limits the value of the surface vorticity in this range),
the larger the aspect ratio, the smaller the Reynolds number required for ωmax(Re, χ)
to reach the nearly constant value of ωc(Re). This corresponds to the behaviour
displayed by the lower branch of the critical curve, where we see that the critical
Reynolds number Remin is a decreasing function of χ .

Let us now return briefly to the rigid sphere case. If we try to make use of (4.1)
to evaluate the critical maximum vorticity at Re= 210 which is approximately the
Reynolds number at which the first bifurcation occurs (Natarajan & Acrivos 1993),
we find ωc(Re = 210) = 13.4. Noting that the maximum of the surface vorticity in
the axisymmetric situation of figure 2 (Re = 200) is 13.1 whereas it is about 16.0 for
Re = 300 if the flow is constrained to axisymmetry (Magnaudet et al. 1995), a linear
interpolation suggests that ωmax(Re = 210) is very close to 13.4. Hence, we see that
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Figure 8. Mean energy of the azimuthal motion in the saturated stage (χ = 2.5).

Re= 210 is a solution of the equation ωmax(Re) = ωc(Re) for a rigid sphere. It thus
turns out that the criterion we established on the basis of numerical results obtained
with oblate bubbles also predicts accurately the value of the critical Reynolds number
at which the first instability of the flow past a rigid sphere occurs. What this successful
prediction suggests is that the boundary condition at the body surface (no-slip vs.

shear-free) is not important per se in the generation of the wake instability. What
appears to be crucial in this respect is the amount of vorticity produced at the body
surface and then injected in the flow. The two different boundary conditions produce
different amounts of vorticity and this is why the two sets of critical parameters
(Re =210 for the rigid sphere, Re = Remin(χ) and Re= Remax(χ) for χ > 2.21 for a
shear-free bubble) are different. However, recasting the problem in terms of critical
vorticity seems capable of providing a unified view of the behaviour of the two types
of axisymmetric bodies in the range of transitional Reynolds numbers.

4.3. Axial symmetry breaking

In what follows we focus on the particular bubble geometry corresponding to χ = 2.5
because it offers a broad range of unstable Reynolds numbers. For this particular
geometry, the phase diagram of figure 7 indicates that the wake first becomes unstable
for Remin ≈ 150. We computed the flow evolution for several Reynolds numbers in the
range Re ∈ [150, 190], starting from the fully developed results at Re =150 which is
actually still a stable configuration. After the instability has saturated, all the resulting
flows were found to be stationary, which indicates that the bifurcation is regular, as
for a rigid sphere. To characterize this bifurcation better, we recorded the energy
of the azimuthal velocity component throughout the wake in the saturated stage.
After averaging in space, this allowed us to evaluate the corresponding kinetic energy
(AV∞)2/2 of the azimuthal motion as a function of Re (Thompson et al. 2001). The
corresponding results are displayed in figure 8. They clearly show that the bifurcation
is supercritical.



Wake instability of a fixed spheroidal bubble 323

(a) (b)

Figure 9. Particle paths for χ = 2.5 and Re= 180. (a) Top view (the y ′-axis is perpendicular
to the figure; (b) back view (the x-axis is perpendicular to the figure).

Figure 10. Particle paths for χ = 2.5 and Re= 180 (side view: the z′-axis is perpendicular to
the figure). Note the two paths seen in figure 9 that start in planes parallel to the symmetry
plane, go around the bubble, and are eventually captured in the symmetry plane z′ = 0.

Figures 9 and 10 show some particle paths in the final flow past the bubble for Re =
180. As suggested by figure 9, the flow exhibits a symmetry with respect to an (x, y ′)-
plane (also defined as z′ = 0) whose orientation is dictated by the initial disturbance
we impose on the flow. Figure 10 shows that the attached eddy is not axisymmetric
any more and is now confined to the lower half of the flow. Fluid particles initially
deviated around the eddy, succeed in escaping toward the upper region where they
are eventually advected downstream in the wake (particles captured within the eddy
follow the same evolution, but the trajectories in figure 10 were stopped before this
happens). Two opposite isovalues of the streamwise vorticity component are plotted
in figure 11. The corresponding structure made of two counter-rotating threads is
similar to that observed in figure 3 for a rigid sphere.

Figure 12 shows the time evolution of the drag and lift coefficients, whose definition
was given in § 2. We first notice that after the instability saturates, both coefficients
do not vary in time any more, which confirms that the bifurcated flow is stationary.
The drag coefficient is found to increase by about 2.5 % after the bifurcation. During
the same time, a transverse or lift force (which is directed towards negative y ′ in the
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Figure 11. Isosurfaces ωxReq/V∞ = ±0.12 of the streamwise vorticity (χ = 2.5, Re= 180).
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Figure 12. Drag and lift coefficients as a function of time (χ = 2.5,Re= 180).

present case, owing to the sign of the streamwise vortices) sets in. In the saturated
stage, this lift component is about 10 % of the drag force. These ratios are close
to those found for Re = 250 in the case of a rigid sphere. In figure 12, we can
see that the growth of the lift force starts well before (typically 50 advective times
before) that of the drag force. This illustrates that the lift component results directly
from the linear interaction of the upstream flow with the counter-rotating vortices,
whereas the drag increase results from nonlinear interactions which become significant
only in the later stages of the instability. Note that in the case of a freely moving
bubble, a wake structure similar to that of figure 11 is observed when the bubble
is zigzagging. However, in this case, the strength and sign of the trailing vortices
vary periodically in time, making the lift force (which drives the horizontal motion
of the bubble) change twice during a period of the zigzag. The difference with the



Wake instability of a fixed spheroidal bubble 325

192 194 196 198 200
0

1

2

3

(× 10–10)

Re

–
2
A2

Figure 13. Variation of the saturated energy of the time-dependent component of the
azimuthal motion (χ = 2.5).

fixed-bubble case is of course due to the feedback effect of the time variations in the
bubble velocity and orientation on the wake dynamics.

The results described here and those recently obtained by Yang & Prosperetti (2007)
are essentially in agreement. Both studies conclude that the axisymmetric flow past
a fixed oblate spheroidal bubble is unstable beyond a certain aspect ratio, and gives
birth to a steady non-axisymmetric flow through a regular bifurcation. The critical
aspect ratio determined by Yang & Prosperetti (2007) through their linear stability
analysis is about 2.1, i.e. slightly lower than that provided by our full nonlinear
computations.

4.4. Transition to unsteadiness

By further increasing the Reynolds number while keeping χ constant, we found
that the flow becomes unsteady for Recu(χ = 2.5) ≈ 195 and then develops a periodic
component. We investigated this secondary bifurcation by determining the saturated
energy of the time-dependent component of the azimuthal motion using the same
approach as for the primary bifurcation. The corresponding result is shown in
figure 13. Close to the threshold, the above kinetic energy is seen to grow linearly
with Re − Recu, which is characteristic from a supercritical Hopf bifurcation. Also,
the Strouhal number evolves according to the law St =0.1156+4.0 × 10−4(Re − Recu)
in the same range of Re. Again, we observe that this second bifurcation has a nature
similar to that encountered for a rigid sphere or a disk. Owing to the computer
ressources required to determine the above threshold, we did not attempt to obtain
the critical curve Re = Recu(χ) for the whole range of χ where figure 7 indicates that
the axisymmetric wake is unstable. In particular, we did not precisely determine the
minimum value of χ (obviously larger than 2.21) for which the secondary bifurcation
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Figure 14. Isosurfaces ωxReq/V∞ = ±0.12 of the streamwise vorticity (χ = 2.5,Re= 300).
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Figure 15. Spectrum of the azimuthal velocity fluctuation at x/Req =5.0, y/Req = 0.6
(χ = 2.5,Re =300).

exists, but the various flow evolutions we obtained suggest that this minimum aspect
ratio is in the range 2.3 <χ < 2.4. These results are confirmed by Yang & Prosperetti
(2007) who also find that unsteadiness occurs in the bubble wake through a Hopf
bifurcation which takes place in the range 2.3 <χ < 2.4 for Re= 660.

Figure 14 shows two opposite isovalues of the streamwise vorticity for Re = 300, i.e.
far from the threshold determined above. The flow still exhibits a planar symmetry
with respect to the plane z′ = 0, which means that the symmetry plane established by
the primary bifurcation is preserved. Unsteadiness is now salient, with an alternation
of positive and negative values of ωx within each thread. An example of the spectral
density of the azimuthal velocity fluctuation is given in figure 15. Clearly, only one
frequency f0 is present, even though the distance to the threshold is large in terms
of Re − Recu. The corresponding Strouhal number St = 2f0Req/V∞ is 0.139, which
is in the same range as the value found for the rigid sphere slightly above the
corresponding threshold. That only one frequency (i.e. one pair of unstable conjugate
complex eigenvalues) exists for Re − Recu of O(102) may seem surprising at first glance.
However, as the primary vorticity at the surface of the bubble does not go on growing
with the Reynolds number for large Re, Re − Recu may not be the most appropriate
measure of the distance to the threshold. Indeed, if we examine the variation of the
maximum of the azimuthal vorticity at the bubble surface from Re= 195 ≈ Recu to
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Figure 16. Evolution of the drag and lift coefficients (χ = 2.5,Re =300).

Re = 300, we find that the two extreme values differ by less than 14 %, whereas the
two corresponding Reynolds numbers differ by more than 50 %. Hence, the source
of the flow instability is only slightly stronger for Re = 300 than for Re =Recu and
no new bifurcation occurs in this range. Figure 16 shows how the drag and lift
coefficients evolve after the instability has saturated. The evolution of the lift force is
found to be almost sinusoidal, confirming that this force component responds almost
linearly to the wake dynamics. In contrast, several harmonics of the fundamental
frequency f0 are present in the drag signal, making it strongly asymmetric. This is
a clear indication that these drag oscillations are driven by nonlinear interactions.
According to figure 16, the mean lift force is about 14 % of the mean drag force,
but the amplitude of the force oscillations is about twelve times larger for the former
component than for the latter. Note that the mean lift force is non-zero and keeps the
same sign as in the previous flow regime, which indicates that the time-averaged flow
is not symmetric with respect to the plane y ′ = 0. This is because, in the immediate
vicinity of the bubble surface, the sign of the streamwise vorticity does not vary in
time within each thread, a feature already noticed by Johnson & Patel (1999) for a
rigid sphere.

4.5. Further evolution with Re

Let us now briefly describe the main results of some computational runs we performed
in the range 600 � Re � 900 for χ =2.5. Such Reynolds numbers are typically those
for which freely moving bubbles undergo zigzagging and spiralling motion (Duineveld
1995; Mougin & Magnaudet 2002). Isocontours of the streamwise vorticity obtained
for Re =700 are displayed in figure 17. This view suggests that the wake still posseses
a planar symmetry. To check this aspect better, we recorded the long-time variation
of the angle tg−1(Fz′/Fy ′) of the lateral force with respect to the fixed (y ′, z′) axes. It
turned out that the relative variation of this angle is O(10−7), which gives support to
the above hypothesis. It is worth noting that in the rigid sphere case, Mittal (1999)
found that the planar symmetry is broken between Re= 350 and Re= 375. That this
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Figure 17. Isosurfaces of the streamwise vorticity ωxReq/V∞ = ±0.12 (χ = 2.5, Re= 700).
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Figure 18. Variation of the Strouhal number of the primary shedding mode with the
Reynolds number. (χ = 2.5).

symmetry is lost for Reynolds numbers only 30 to 35 % beyond the threshold of the
Hopf bifurcation for a rigid sphere while it still subsists for Reynolds numbers more
than 3.5 times Recu for a bubble is remarkable. However, it must be kept in mind that
a better indicator of the distance to the threshold in the present case is the maximum
of the vorticity at the bubble surface, which varies only by about 35 % from Re =195
to Re =700.

Compared with the previous observations at Re = 300, the wavelength of the
longitudinal eddies observed at Re= 700 is significantly shorter, i.e. the shedding
frequency f0 has increased. This is confirmed by figure 18 which shows that the
Strouhal number increases by roughly 60 % from Re = 300 to Re =700 and is about
0.22 at the present Reynolds number. Moreover, a secondary mode with a higher
Strouhal number (St = 2f1Req/V∞ ≈ 0.39) is now present. Figure 19 indicates that
the magnitude of this mode increases with the downstream distance: whereas the
signature of the second mode is still weak at x/Req = 3.0, it has become dominant
at x/Req = 6.0. Figure 20 shows how the drag and lift coefficients behave in the
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Figure 19. Spectra of the azimuthal velocity at: (a) x/Req = 3.0, y/Req = 0.36;
(b) x/Req = 6.0; y/Req = 0.4 (χ = 2.5, Re = 700).
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Figure 20. Drag and lift coefficients for χ =2.5,Re = 700.

present case. The drag fluctuations have a very small amplitude (about 0.8 % of the
mean value), but reflect the joint presence of the two modes. In contrast, the lift
fluctuations are still dominated by the primary mode, but also exhibit low-frequency
modulations in which the signature of the subharmonic mode f0/2 seems discernible.
These fluctuations are large (their crest-to-crest amplitude is about 35 % of the mean
force), but the lift force keeps a constant sign with a mean value about 20 % of the
mean drag.

As we were mainly interested in the first two bifurcations of the flow, we did not
study the properties of the f1 and f0/2 modes in detail, nor the bifurcations through
which they occur. The above results are just given here to indicate that in the above
range of Re the complexity of the wake dynamics increases with Re − Recu, a generic
feature of transitional wakes. However, in the present situation this complexity cannot
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keep on increasing indefinitely, since we know that the wake returns to axisymmetry
beyond a certain Reynolds number, which for χ = 2.5 is about 2700. We carried
out some extra computations at somewhat higher Reynolds numbers to examine
qualitatively the evolution of the wake dynamics. It turned out that a further increase
in the Reynolds number up to Re= 900 yields a significant decrease in the magnitude
of the unsteady component of the wake. In particular, compared to figure 20, the
amplitude of lift oscillations is reduced by roughly 25 %. This indicates that the flow
is well on the route leading to its return to steadiness. This is not surprising since
in this range of Re the maximum vorticity at the bubble surface has almost reached
its asymptotic value (see figure 5), so that the Re−1/2-decay of the vorticity flux acts
efficiently to decrease the amount of vorticity injected in the flow. Since in practice
bubbles whose shape is close to an oblate spheroid have rise Reynolds numbers less
than 103, we did not explore in detail the range Re ∈ [103, 2 × 103] which would
have consumed much computational time. Therefore we did not determine the critical
Reynolds number Recs at which the flow recovers its steadiness. While this leaves
the picture we obtain for the particular aspect ratio χ =2.5 slightly incomplete, this
overall picture is qualitatively as follows. The flow is steady and axisymmetric for
both Re � 150 and Re � 2700, approximately. In between, the flow is steady but non-
axisymmetric for 150 < Re < 195 and Recs <Re < 2700, while it is unsteady only in
the intermediate range 195 < Re< Recs , with Recs larger than 103 and most probably
in the range [1.5 × 103, 2 × 103].

5. Mechanism of the primary instability
Up to this point we have approached physically the process that leads to wake

instability through the properties of the surface vorticity and those of the associated
flux. Our results show that there is a direct connection between the strength of
these quantities and the response of the flow. Nevertheless, it is desirable to obtain
a more precise understanding of the mechanism by which, once injected in the base
axisymmetric flow, the azimuthal vorticity may lead to its destabilization. The ultimate
goal of this quest would be to obtain a rational instability criterion, such as the well-
known Rayleigh criterion (Drazin & Reid 1981) for quasi-parallel plane free-shear
flows. However, this goal is made very difficult, both by the three-dimensionality of the
disturbance to be considered and by the strongly non-parallel character of the near
wake. Indeed, little theoretical work has been devoted to the instability of axisymmetric
wakes. Most notably, Monkewitz (1988) considered a family of axisymmetric wake
profiles and showed that such wakes can be absolutely unstable under certain condi-
tions. However, his analysis considers only quasi-parallel wakes, and the corresponding
results, which predict that an m =1 helical mode becomes absolutely unstable beyond
a certain Reynolds number, only apply to Reynolds numbers (based on the body
characteristic length) of several thousands. Therefore, his results cannot explain the
axial symmetry breaking corresponding to the first bifurcation observed in the wake
of a bubble or a rigid axisymmetric bluff body. That the non-parallel character of the
flow has to be taken into account to elucidate this primary instability mechanism is
made clear by examining the spatial structure of the eigenfunction associated with the
first unstable mode (see e.g. figures 8 and 9 of Natarajan & Acrivos (1993) for the case
of a rigid sphere and a disk). In cylindrical coordinates (σ, φ, x), such plots show that
the radial and azimuthal velocity components of this eigenmode reach their maximum
right on the symmetry axis very close to the rear of the body, whereas the streamwise
component reaches its maximum slightly above the axis in the same rear region.
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Figure 21. Isocontours of the azimuthal vorticity around the bubble in the base flow for
χ = 2.5 (the upstream flow is from left to right). (a) General view for Re= 150. Detailed view
in the near-wake region for (b) Re= 150 and (c) Re= 180. Vorticity keeps a constant sign on
all isocontours displayed in the figure (the vorticity takes tiny values of opposite sign only
within a very thin layer at the rear of the bubble, from the separation point to the symmetry
axis). The core of the transition region is located in the range 1.2 < x/a < 1.5, 1.0 < σ/a < 1.8
(the streamwise (horizontal) coordinate x and the radial (vertical) coordinate σ are normalized
by the length a of the minor axis of the bubble).

As vorticity is the flow property by which the instability arises, it appears relevant
to examine the vorticity distribution in the base flow, close to the threshold. Detail
of the isocontours of the azimuthal vorticity just at the back of a bubble with
χ =2.5 are shown in figure 21 for two Reynolds numbers, namely Re =150 which
is just below the threshold and Re =180 which is slightly beyond it (since the three-
dimensional flow is unstable in the latter case, the corresponding figure was obtained
by constraining the flow to remain axisymmetric). Two distinct regions appear in
the upper part (σ/a < 2.0) of the detailed distributions. Very close to the bubble, the
isocontours are almost parallel to the bubble surface. The reason for this is that both
the surface curvature and the reverse tangential velocity are weak all along this rear
part (note that even without the presence of a standing eddy, the surface vorticity is
essentially concentrated close to the equator and then decreases very quickly as the
distance to the equator increases, as shown by (A 10)). Therefore, in the region under
consideration, the bubble surface appears essentially as a vorticity-free boundary;
though to a lesser extent, rigid bodies such as a sphere or a disk yield a qualitatively
similar conclusion, since the surface shear stress is small in the recirculating region,
resulting in a small surface vorticity. On the other hand, somewhat downstream, the
ωφ-isocontours are almost parallel to the symmetry axis. This is a direct consequence
of the general tendency of ωφ/σ to become closer and closer to a constant within a
closed axisymmetric eddy as the Reynolds number increases, a tendency culminating
in the Prandtl–Batchelor theorem (Batchelor 1956) in the limit of very large Reynolds
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number. Obviously, this theorem does not strictly apply in the present case (i.e.
the standing eddy is not close to a Hill vortex) since the Reynolds number is still
moderate. However the above tendency is already discernible. It may also be seen in
figures 9 and 10 of Fornberg (1988) where the axisymmetric flow past a rigid sphere
was computed up to a Reynolds number of 5 × 103.

From the above two arguments, we see that there is a transition region within
which the ωφ-isocontours have to turn sharply to satisfy both conditions. According
to figure 21, this region takes place approximately in the range 1.2 <x/a < 1.5,
1.0 <σ/a < 1.8 for χ = 2.5. As can be seen in figure 21, by comparing the shape of the
isocontours for the two Reynolds numbers, the angle made within this region by the
iso-ωφ with the symmetry axis decreases when the Reynolds number increases because
of the stronger and stronger tendency for ωφ/σ to become constant throughout the
standing eddy. Clearly, viscous effects cannot be ignored in this matching region, since
the nearly zero vorticity condition at the surface originates from viscosity. Within the
standing eddy, the maximum velocity is typically O(ωmaxReq) (though probably with
a small prefactor) when the eddy radius in the σ -direction becomes comparable with
that of the body, which is always the case when the flow is close to instability (see
figure 6). Therefore, to keep inertial and viscous effects in balance, the thickness of
the transition region must evolve as ReqRe−1/2

ω , with Reω =ωmaxR
2
eq/ν. This transition

region, as well as its thinning as the Reynolds number increases is clear in figure 8
of Fornberg (1988). Let us now examine how the various terms of the azimuthal
vorticity balance behave in this region. For a steady axisymmetric flow, the vorticity
balance reads
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In the region under consideration, Vσ (resp. Vx) is positive (resp. negative), owing to
the reverse flow, and ωφ has the same sign as ωmax within the whole region of interest
here. Thus, as long as ωφ keeps on increasing with σ , the first term in the left-hand
side of (5.1) is positive and may balance, at least partially, the other two inertial terms
which are both negative, since ωφ is increasing with x (see figure 21). In contrast, if
∂ωφ/∂σ vanishes (i.e. the angle θω between the vorticity isocontours and the symmetry
axis is 90◦), these two terms can only be balanced by the viscous terms, which
are indeed both negative according to figure 21. Note, however, that as soon as
∂ωφ/∂σ = 0 within a finite range of σ , the first term on the right-hand side reduces

to −νωφ/σ
2, which indicates a Re−1

ω -decrease. The dominant viscous term is then
ν∂2ωφ/∂x2, implying that in order to maintain the overall balance, the streamwise
gradient of ωφ has to become stronger and stronger as Reω increases. We believe that
such a situation in which the vorticity tends to become discontinuous as Reω → ∞ is
intrinsically unstable. The situation is, of course, even worse if θω becomes less than
90◦, since all three terms on the left-hand side of (5.1) are then negative.

Based on the above considerations, we strongly suspect that, if the Reynolds
number is large enough, the flow within the transition region cannot remain stable if
θω becomes less than 90◦ at some point within it. Figure 21 fully supports this view:
θω is slightly more than 90◦ everywhere for Re= 150 and the flow is still stable, while
there is a zone of the transition region where this angle is less than 90◦ for Re =180
and the primary instability has occurred in between. Obviously, our argument has
to be confirmed by a detailed stability analysis of the flow in the transition region
or of an equivalent flow model. However, such an analysis is beyond the scope of
the present work and we just try here to put forward a plausible scenario based
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on our numerical observations. If the above argument is correct, then a sufficient
condition for the primary instability of the flow at high enough Reynolds number
is that ∂ωφ/∂σ vanishes within the interior of the standing eddy. Indeed, similar to
what we observed in figure 21, we examined the iso-vorticity distributions for various
χ and Re and always detected a region where ∂ωφ/∂σ vanishes when the base flow
is very close to the threshold. We also note that in the flow past a rigid sphere,
vorticity contours reported by Fornberg (1988) for Re = 500 clearly exhibit a part of
the transition region where ∂ωφ/∂σ is negative, whereas this quantity almost vanishes
in the same zone at Re = 200, i.e. close to the threshold, Re ≈ 210. It is, of course,
important to notice that the maximum vorticity at the body surface is involved in
the mechanism described, as it enters the eddy Reynolds number Reω and therefore
governs the thickness of the transition region.

Note that the instability scenario proposed here is specific to axisymmetric flows
and of no value in plane wakes past bluff bodies because of their different structure.
More precisely, let us assume that the absolute instability that yields the Kármán
vortex street in a two-dimensional wake is inhibited by some means, allowing the
flow to remain stationary until the Prandtl–Batchelor theorem approximately applies.
Then, as the two-dimensional version of this theorem requires the vorticity to be
constant within the standing eddy, this constraint does not conflict with the existence
of a weak, almost constant, vorticity at the rear part of the body. Therefore, the thin
transition region which is central in our argument does not exist in two dimensions.
An illustration of this different near-wake structure is provided by the computations
performed by Fornberg (1985) past a circular cylinder up to Re= 600.

6. Summary and concluding remarks
We carried out direct numerical simulations of the flow past a fixed oblate bubble

with a prescribed aspect ratio, the bubble surface being considered as a shear-free
boundary. Our results show that, beyond a critical aspect ratio of about 2.21, the flow
is unstable within a finite range of Re. This behaviour, which is at odds with that
observed for rigid bodies, results from the surface vorticity at a shear-free surface of
prescribed shape reaching a finite value when the Reynolds number becomes large.
Because of this feature, the vorticity flux injected into the flow evolves as Re−1/2, so
that the flow recovers its stability for large enough Reynolds number. The reason
why the flow may become unstable only if the bubble aspect ratio χ is large enough
was clarified by showing that the strength of the vorticity (resp. vorticity flux) at the
bubble surface is a strongly increasing function of the aspect ratio, which for large
χ behaves as χ8/3 (resp. χ7/2). By varying independently χ and Re, we obtained a
quantitative, though approximate, map of the unstable region in the (χ, Re)-plane. In
particular, this map shows that the flow past a spherical bubble can never become
unstable, whatever the Reynolds number. We showed that the critical curve that limits
the unstable region may be re-interpreted in terms of the maximum vorticity at the
bubble surface, which yields an empirical criterion to determine whether the flow is
stable or not. This criterion was found to work also for a rigid sphere, which suggests
that once the amount of vorticity produced at the body surface is known, the nature
of this surface, i.e. the boundary condition that takes place on it, is not important by
itself. Then we selected a particular aspect ratio, χ = 2.5, to study the flow evolution
with the Reynolds number. The flow first undergoes a supercritical regular bifurcation
which yields a steady non-axisymmetric flow with, however, a planar symmetry. In this
flow configuration, the wake exhibits a pair of counter-rotating threads within which
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streamwise vorticity is concentrated. This wake structure, qualitatively similar to that
observed behind an airplane, gives rise to a transverse or lift force. Then, by further
increasing the Reynolds number, a secondary supercritical Hopf bifurcation occurs.
The sign of the streamwise vorticity shed in each thread then changes periodically
with a frequency increasing almost linearly with the Reynolds number. The planar
symmetry is still maintained in this regime, as well as the sign of the mean lift force.
The sequence made of these first two bifurcations is similar to that observed by
others for fixed rigid spheres and disks and appears to be typical of axisymmetric
bluff bodies, irrespective of their precise shape and of the nature of their surface.
Some computations were also carried out at higher Reynolds number and revealed
a progressively increasing complexity of wake dynamics which, however, preserves
the planar symmetry, at least up to the maximum Reynolds number we explored.
Nevertheless, in the same range of Re, the magnitude of unsteady flow characteristics
such as drag and lift fluctuations was found to decrease as Re increases, owing to the
Re−1/2-decay of the surface vorticity flux. This is consistent with the requirement that
the flow recovers its steadiness beyond a certain Reynolds number (which we did not
determine) and eventually returns to axisymmetry beyond another, larger, Reynolds
number.

We finally tried to provide a physical explanation to the mechanism that drives
the primary instability. Close to the threshold, examination of the structure of the
azimuthal vorticity field in the base flow revealed the existence of a thin layer just
behind the bubble where the orientation of the isocontours turn abruptly almost at
right angles. Existence of this structure was explained by advocating the constraints
the vorticity has to satisfy both at the bubble surface and within the standing eddy.
We showed that this layer has a boundary-layer structure, with a thickness scaling
as the inverse square root of the maximum surface vorticity. Then, based on the
azimuthal vorticity balance, we pointed out that if the vorticity gradient in the
direction perpendicular to the symmetry axis vanishes at some point, inertial terms
can only be balanced by the streamwise viscous contribution, which certainly leads
to an instability beyond a certain Reynolds number. This criterion probably provides
only a sufficient condition for the primary wake instability, but appears to be in good
agreement with our numerical observations. A detailed stability analysis of the base
flow in this region is of course required to confirm the above scenario and obtain a
more accurate criterion.

Present results have several potential interests. First, by being concerned with a
vorticity production mode different from the usual one at a rigid surface, they help
clarify the central role of vorticity, independently of the source that generates it. In
other words, what appears to be crucial regarding wake instability is the amount of
vorticity the body injects in the flow at a given Reynolds number, not the no-slip
or shear-free condition itself. The fact that the sequence of the first two bifurcations
is the same for the two classes of bluff bodies and that the empirical criterion we
derived from figure 7 also applies to a rigid sphere strongly supports this view. Our
results act as a reference for comparing, for a given set of bubble aspect ratio and
Reynolds number, the idealized case of a fixed bubble with the more realistic situation
of a freely moving bubble. As a first step in this direction, let us mention again that
the minimum aspect ratio beyond which we observe wake instability (χcm ≈ 2.21)
coincides with the threshold determined by Mougin & Magnaudet (2002) for the
onset of path instability. This is an additional indication that wake instability is the
cause of path instability of millimetre-sized bubbles rising in low-viscosity liquids.
Moreover, the comparison between the two situations may shed light on the role



Wake instability of a fixed spheroidal bubble 335

played by the couplings between the degrees of freedom of the bubble and the
dynamics of its wake. In particular, our freely moving bubble computations (Mougin
& Magnaudet 2002) show that, once a bubble starts zigzagging and whatever the
current Reynolds number, its wake remains as two counter-rotating threads where,
at a given time, the streamwise vorticity keeps a constant sign all along each thread.
For instance, figure 5 of Mougin & Magnaudet (2002) shows the wake structure of
a bubble with an aspect ratio χ =2.5 zigzagging at a Reynolds number of about
800. In this case, the wake structure is similar to that displayed in figure 11 of the
present paper which corresponds to a much lower Reynolds number (Re =180), not
to that of figure 17 which corresponds to the much closer value Re= 700. Therefore
it appears that, owing to the translational and rotational degrees of freedom of the
bubble in the freely moving case, the wake never exhibits the alternation of positive
and negative vorticity within each thread, characteristic of the wake topology which
begins at the Hopf bifurcation. A related aspect is the lift-to-drag ratio, which in the
present fixed-bubble case increases progressively with the Reynolds number, but does
not exceed 0.20 for Re= 700, whereas it is about unity in the same range of Re for
the corresponding freely-moving bubble. Exploring the origin of such differences will
be the subject of a future paper.

We are extremely grateful to Andrea Prosperetti for providing a preprint of his
work with B. Yang and sharing doubts and ideas with us all along the preparation of
this paper. This greatly stimulated us in the quest of the instability mechanism. We
also thank Richard Adoua for carrying out several extra computations of the base
flow and providing figure 21.

Appendix
In this Appendix, we derive the expression of the leading-order vorticity at the

surface of an oblate spheroidal bubble. The result is obtained by considering an
infinitely large Reynolds number, so that the velocity is given everywhere by the
irrotational solution.

Let us first introduce the oblate ellipsoidal coordinate system (ζ, µ, φ) such that

x = kζµ, y = k(1 + ζ 2)
1/2

(1−µ2)1/2 cos φ, z = k(1 + ζ 2)
1/2

(1−µ2)1/2 sin φ. (A 1)

For µ ∈ [−1, 1] and φ ∈ [0, 2π], the surface corresponding to ζ = ζ0 = (χ2 − 1)−1/2

corresponds to that of an oblate ellipsoid of aspect ratio χ . This ellipsoid has an
equivalent radius Req provided we select k = Req(χ

2 − 1)1/2χ−2/3. The metric factors hµ

and hζ such that h2
µ = (∂x/∂µ)2 +(∂y/∂µ)2 +(∂z/∂µ)2 and h2

ζ =(∂x/∂ζ )2 +(∂y/∂ζ )2 +

(∂z/∂ζ )2 are given by

hµ = k

(
ζ 2 + µ2

1 − µ2

)1/2

, hζ = k

(
ζ 2 + µ2

1 + ζ 2

)1/2

. (A 2)

The translational potential corresponding to a uniform flow of velocity V∞ parallel
to the minor axis of the ellipsoid is (Lamb 1945)

φV = kV∞µ

(
ζ +

1 − ζ cot−1 ζ

cot−1 ζ0 − ζ0

(
1 + ζ 2

0

)−1

)
. (A 3)
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The tangential velocity at the surface is then

Vµ(ζ0) = V∞

(
1 − µ2

ζ 2
0 + µ2

)1/2(
ζ0 +

1

ζ0 −
(
1 + ζ 2

0

)
cot−1 ζ0

)
. (A 4)

The surface curvature tensor ∇Sn may be written in the form ∇Sn = Hn
µeµeµ +Hn

φ eφeφ ,
where Hn

µ and Hn
φ (resp. eµ and eφ) are the surface radii of curvature (resp. the unit

vectors) in the meridian and azimuthal directions, respectively. The radius of curvature
Hn

µ at the ellipsoid surface is given by

Hn
µ(ζ0) =

1

hµhζ

∂hµ

∂ζ
(ζ0) =

ζ0

(
1 + ζ 2

0

)1/2

k
(
ζ 2
0 + µ2

)3/2
. (A 5)

According to (A 4) and (A 5), Vµ(ζ0) and Hn
µ(ζ0) both reach their maximum at the

equator of the ellipsoid (µ = 0). Therefore, from (3.4) we conclude that the surface
vorticity ωS = ωφeφ also reaches its maximum at this position, the magnitude of this
maximum being

ωmax = 2
V∞

kζ 3
0

(
1 + ζ 2

0

)1/2

(
1 + ζ 2

0

)
cot−1 ζ0 − ζ0

. (A 6)

Replacing ζ0 and k by their values as a function of χ in (A 6) then yields

ωmax = 2
V∞

Req

χ5/3(χ2 − 1)3/2

χ2 sec−1 χ − (χ2 − 1)1/2
. (A 7)

When χ → 1, sec−1χ → 1
3
(χ2 − 1)1/2(4 − χ2), so that we recover the well-known result

(Moore 1963)

ωmax(χ = 1) = 3
V∞

Req

. (A 8)

At very large χ , sec−1 χ → π/2, so that

ωmax → 4

π

V∞

Req

χ8/3. (A 9)

From (A 4) and (A 5) we also find that at any point of the surface, the vorticity is

ωφ(µ) = ωmax

(1 − µ2)
1/2

(1 + (χ2 − 1)µ2)2
. (A 10)

This result indicates for instance that at y = y(ωmax)/2, which according to (A 1) is
obtained for µ2 = 3/4, ωφ/ωmax = 1/(2(1 + 3(χ2 − 1)/4)2), which for large χ tends
toward 8χ−4/9.

REFERENCES

Batchelor, G. K. 1956 On steady laminar flow with closed streamlines at large Reynolds number.
J. Fluid Mech. 1, 177–190.

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics . Cambridge University Press.

Benjamin, T. B. 1987 Hamiltonian theory for motion of bubbles in an infinite liquid. J. Fluid Mech.
181, 349–379.

Blanco, A. & Magnaudet, J. 1995 The structure of the axisymmetric high-Reynolds number flow
around an ellipsoidal bubble of fixed shape. Phys. Fluids 7, 1265–1274.

Calmet, I. & Magnaudet, J. 1997 Large-eddy simulation of high-Schmidt number mass transfer
in a turbulent channel flow. Phys. Fluids 9, 438–455.



Wake instability of a fixed spheroidal bubble 337

Dandy, D. S. & Leal, L. G. 1986 Boundary layer separation from a smooth slip surface. Phys.
Fluids 29, 1360–1366.

Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability . Cambridge University Press.

Duineveld, P. C. 1995 The rise of an ellipsoidal bubble in water at high Reynolds number. J. Fluid
Mech. 292, 325–332.

Ellingsen, K. & Risso, F. 2001 On the rise of an ellipsoidal bubble in water: oscillatory paths and
liquid-induced velocity. J. Fluid Mech. 440, 235–268.

Fornberg, B. 1985 Steady viscous flow past a circular cylinder up to Reynolds number 600.
J. Comput. Phys. 61, 297–320.

Fornberg, B. 1988 Steady viscous flow past a sphere at high Reynolds numbers. J. Fluid Mech. 190,
471–489.
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